日韩高清在线观看免费-国产国产成年年人免费看片-温柔的少妇疯狂迎合在线观看-亚洲一级香蕉视频东京热

Image Modal
中考網(wǎng)
全國(guó)站
快捷導(dǎo)航 中考政策指南 2024熱門中考資訊 中考成績(jī)查詢 歷年中考分?jǐn)?shù)線 中考志愿填報(bào) 各地2019中考大事記 中考真題及答案大全 歷年中考作文大全 返回首頁(yè)
您現(xiàn)在的位置:中考 > 中考備考 > 中考復(fù)習(xí) > 中考數(shù)學(xué) > 正文

2019年中考數(shù)學(xué)構(gòu)造平行四邊形證題的技巧

來(lái)源:網(wǎng)絡(luò)資源 作者:中考網(wǎng)整理 2019-05-01 17:49:26

中考真題

智能內(nèi)容

一. 構(gòu)造平行四邊形證兩線段平行

例1. 已知如圖,平行四邊形ABCD的對(duì)角線AC和BD交于O,E、F分別為OB、OD的中點(diǎn),過(guò)O任作一直線分別交AB、CD于G、H。

求證:GF//EH。

證明:連結(jié)GE、FH

四邊形ABCD是平行四邊形

四邊形EHFG是平行四邊形

二. 構(gòu)造平行四邊形證兩線段相等

例2. 如圖, 中,D在AB上,E在AC的延長(zhǎng)線上,BD=CE連結(jié)DE,交BC于F,∠BAC外角的平分線交BC的延長(zhǎng)線于G,且AG//DE。

求證:BF=CF

分析

:過(guò)點(diǎn)C作CM//AB交DE于點(diǎn)M,可以證明BD=CM,然后再利用平行四邊形的性質(zhì)得到BF=CF

證明:過(guò)點(diǎn)C作CM//AB交BE于點(diǎn)M,連接BM、CD,則∠CME=∠ADE

四邊形BMCD為平行四邊形

故BF=CF

三. 構(gòu)造平行四邊形證線段的不等關(guān)系

例3. 如圖,AD是 的邊BC上的中線,求證:

分析

:欲證 ,即要證 ,設(shè)法將2AD、AB、AC歸結(jié)到一個(gè)三角形中,利用三角形任意兩邊之和大于第三邊來(lái)證明。注意到AD為 的中線,故可考慮延長(zhǎng)AD到E,使DE=AD,則四邊形ABEC為平行四邊形。從而問(wèn)題得證。

證明:延長(zhǎng)AD到E,使DE=AD,連結(jié)BE、EC

#p#分頁(yè)標(biāo)題#e#

四邊形ABEC是平行四邊形

在 中,AE

即2AD

點(diǎn)評(píng):此題是利用三角形三邊關(guān)系定理、平行四邊形的判定,通過(guò)延長(zhǎng)中線將證明三角形中三條線段間的不等關(guān)系,轉(zhuǎn)化為三角形三邊之間的關(guān)系,從而使問(wèn)題迎刃而解。

四. 構(gòu)造平行四邊形證線段的倍分關(guān)系

例4. 如圖,分別以 中的AB、AC為邊向外作正方形ABEF和正方形ACGH,M是BC的中點(diǎn),求證:FH=2AM

證明:延長(zhǎng)AM到D,使MD=AM,連結(jié)BD、CD,

是BC的中點(diǎn)

四邊形ABDC為平行四邊形

又AF=BA,AH=AC=BD

故FH=2AM

五. 構(gòu)造平行四邊形證兩線段互相平分

例5. 平面上三個(gè)等邊三角形 兩兩共有一個(gè)頂點(diǎn),如圖所示,求證:CD與EF互相平分

分析

:要證CD與EF互相平分,須證四邊形DFCE是平行四邊形

證明:連結(jié)DE、DF、AF易知AD=AB=BD

又AE=AC,AD=AB

∠DAE=60°-∠EAB=∠BAC

四邊形DECF是平行四邊形

故CD與EF互相平分

六. 構(gòu)造平行四邊形證角的不等關(guān)系

例6. 如圖,在梯形ABCD中,AD//BC,對(duì)角線AC>BD#p#分頁(yè)標(biāo)題#e#

求證:∠DBC>∠ACB

證明:過(guò)點(diǎn)D作DE//AC交BC的延長(zhǎng)線于點(diǎn)E,則四邊形ACED是平行四邊形

在 中,∠DBE>∠E

七. 構(gòu)造平行四邊形證線段的和差關(guān)系

例7. 如圖, 中,點(diǎn)E、F在邊AB上,AE=BF,ED//AC//FG,求證:ED+FG=AC

證明:過(guò)E作EH//BC交AC于H

四邊形CHED為平行四邊形

又AE=BF,

同步練習(xí):

1. 如圖1,在梯形BCED中,DE//BC延長(zhǎng)BD、CE交于A,在BD上截取BF=AD。過(guò)F作FG//BC交EC于G,求證:DE+FG=BC。

2. 如圖2, 中,AB=AC,E是AB上一點(diǎn),F(xiàn)是AC延長(zhǎng)線上一點(diǎn),BE=CF,EF交BC于D。

求證:DE=DF

3. 如圖3,平行四邊形ABCD中,E、G、F、H分別是四條邊上的點(diǎn),且AE=CF,BG=DH,求證:EF與GH互相平分

4. 如圖4,已知AB=AC,B是AD的中點(diǎn),E是AB的中點(diǎn),求證CD=2CE

5. 已知:如圖5在四邊形ABCD中,AB=DC,AD=BC,點(diǎn)E在BC上,點(diǎn)F在AD上,AF=CE,EF與對(duì)角線BD相交于點(diǎn)O,求證:O是BD的中點(diǎn)。

提示

1. 過(guò)點(diǎn)F作FM//AC交BC于點(diǎn)M,則有平行四邊形FMCG。

2. 過(guò)E作EG//AC交BC于G,連結(jié)CE、GF。#p#分頁(yè)標(biāo)題#e#

3. 連結(jié)FH、HE、EG、GF

4. 延長(zhǎng)CE至F,使EF=CE,連結(jié)AF、BF。

5. 連結(jié)BF、DE

四邊形ABCD是平行四邊形

四邊形BEDF是平行四邊形

O是BD的中點(diǎn)

   歡迎使用手機(jī)、平板等移動(dòng)設(shè)備訪問(wèn)中考網(wǎng),2023中考一路陪伴同行!>>點(diǎn)擊查看

  • 歡迎掃描二維碼
    關(guān)注中考網(wǎng)微信
    ID:zhongkao_com

  • 歡迎掃描二維碼
    關(guān)注高考網(wǎng)微信
    ID:www_gaokao_com

  • 歡迎微信掃碼
    關(guān)注初三學(xué)習(xí)社
    中考網(wǎng)官方服務(wù)號(hào)

熱點(diǎn)專題

  • 2024年全國(guó)各省市中考作文題目匯總
  • 2024中考真題答案專題
  • 2024中考查分時(shí)間專題

[2024中考]2024中考分?jǐn)?shù)線專題

[2024中考]2024中考逐夢(mèng)前行 未來(lái)可期!

中考報(bào)考

中考報(bào)名時(shí)間

中考查分時(shí)間

中考志愿填報(bào)

各省分?jǐn)?shù)線

中考體育考試

中考中招考試

中考備考

中考答題技巧

中考考前心理

中考考前飲食

中考家長(zhǎng)必讀

中考提分策略

重點(diǎn)高中

北京重點(diǎn)中學(xué)

上海重點(diǎn)中學(xué)

廣州重點(diǎn)中學(xué)

深圳重點(diǎn)中學(xué)

天津重點(diǎn)中學(xué)

成都重點(diǎn)中學(xué)

試題資料

中考?jí)狠S題

中考模擬題

各科練習(xí)題

單元測(cè)試題

初中期中試題

初中期末試題

中考大事記

北京中考大事記

天津中考大事記

重慶中考大事記

西安中考大事記

沈陽(yáng)中考大事記

濟(jì)南中考大事記

知識(shí)點(diǎn)

初中數(shù)學(xué)知識(shí)點(diǎn)

初中物理知識(shí)點(diǎn)

初中化學(xué)知識(shí)點(diǎn)

初中英語(yǔ)知識(shí)點(diǎn)

初中語(yǔ)文知識(shí)點(diǎn)

中考滿分作文

初中資源

初中語(yǔ)文

初中數(shù)學(xué)

初中英語(yǔ)

初中物理

初中化學(xué)

中學(xué)百科

欧美日韩少妇精品专区性色| 91欧美日韩中在线视频| 欧美日韩国产另类一区二区| 少妇成人精品一区二区| 黄片免费在线观看日韩| 少妇特黄av一区二区三区| 国内真实露脸偷拍视频| 国产毛片对白精品看片| 午夜国产精品福利在线观看| 亚洲av又爽又色又色| 亚洲日本久久国产精品久久| 日韩欧美第一页在线观看| 欧美日韩一区二区综合| 国产精品午夜一区二区三区| 中文字幕乱码亚洲三区| 国产成人在线一区二区三区| 色丁香一区二区黑人巨大| 五月综合婷婷在线伊人| 欧美欧美欧美欧美一区| 欧美日韩一区二区综合| 日本成人中文字幕一区| 在线观看免费午夜福利| 欧美日韩人妻中文一区二区| 狠狠亚洲丁香综合久久| 亚洲精品熟女国产多毛| 亚洲一区二区精品免费视频| 免费观看潮喷到高潮大叫| 国产又色又粗又黄又爽| 国产精品视频一级香蕉| 美女被后入福利在线观看| 女同伦理国产精品久久久| 国产中文字幕久久黄色片| 中文字幕乱码免费人妻av| 69精品一区二区蜜桃视频| 亚洲夫妻性生活免费视频| 偷拍洗澡一区二区三区| 国产精品一区二区三区黄色片| 一区二区不卡免费观看免费| 大胆裸体写真一区二区| 成人欧美一区二区三区视频| 日本女优一区二区三区免费|